Journal Metrics

  • IF value: 3.753 IF 3.753
  • IF 5-year<br/> value: 4.644 IF 5-year
    4.644
  • SNIP value: 1.376 SNIP 1.376
  • IPP value: 4.067 IPP 4.067
  • SJR value: 2.451 SJR 2.451
  • h5-index value: 57 h5-index 57
Biogeosciences, 10, 2973-2991, 2013
www.biogeosciences.net/10/2973/2013/
doi:10.5194/bg-10-2973-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: a mesocosm experiment in the Mediterranean Sea
V. Giovagnetti1, C. Brunet1, F. Conversano1, F. Tramontano1, I. Obernosterer2,3, C. Ridame4, and C. Guieu5,6
1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
2Université Pierre et Marie Curie-Paris 6, UMR7621, LOMIC, Observatoire Océanologique, 66650 Banyuls/Mer, France
3CNRS, UMR7621, LOMIC, Observatoire Océanologique, 66650 Banyuls/Mer, France
4Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), CNRS-Université Paris VI, Campus Jussieu, Paris, France
5Laboratoire d'Océanographie de Villefranche/Mer, CNRS-INSU, UMR7093, Observatoire Océanologique, 06230, Villefranche/Mer, France
6Université Pierre et Marie Curie-Paris 6, UMR7093, LOV, Observatoire Océanologique, 06230, Villefranche/Mer, France

Abstract. In this study, we investigate the response of the phytoplankton community, with emphasis on ecophysiology and succession, after two experimental additions of Saharan dust in the surface water layer of a low-nutrient low-chlorophyll ecosystem in the Mediterranean Sea. Three mesocosms were amended with evapocondensed dust to simulate realistic Saharan dust events, while three additional mesocosms were kept unamended and served as controls. The experiment consisted in two consecutive dust additions and samples were daily collected at different depths (−0.1, −5 and −10 m) during one week, starting before each addition occurred. Data concerning HPLC pigment analysis on two size classes (< 3 and > 3 μm), electron transport rate (ETR) vs. irradiance curves, non-photochemical fluorescence quenching (NPQ) and phytoplankton cell abundance (measured by flow cytometry), are presented and discussed in this paper. Results show that picophytoplankton mainly respond to the first dust addition, while the second addition leads to an increase of both pico- and nano-/microphytoplankton. Ecophysiological changes in the phytoplankton community occur, with NPQ and pigment concentration per cell increasing after dust additions. While biomass increases after pulses of new nutrients, ETR does not greatly vary between dust-amended and control conditions, in relation with ecophysiological changes within the phytoplankton community, such as the increase in NPQ and pigment cellular concentration. A quantitative assessment and parameterisation of the onset of a phytoplankton bloom in a nutrient-limited ecosystem is attempted on the basis of the increase in phytoplankton biomass observed during the experiment. The results of this study are discussed focusing on the adaptation of picophytoplankton to nutrient limitation in the surface water layer, as well as on size-dependent competition ability in phytoplankton.

Citation: Giovagnetti, V., Brunet, C., Conversano, F., Tramontano, F., Obernosterer, I., Ridame, C., and Guieu, C.: Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: a mesocosm experiment in the Mediterranean Sea, Biogeosciences, 10, 2973-2991, doi:10.5194/bg-10-2973-2013, 2013.
 
Search BG
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share